首页

微分方程与动力系统系列报告

发布人:日期:2022年05月04日 11:09浏览数:

时间2022/05/11 10:00-12:30

报告地址:腾讯会议645-637-928

报告题目:Infinitely many non-conservative solutions for the three-dimensional Euler equations with arbitrary initial data in $C^{1/3-\epsilon}$

报告摘要Let $0<\beta<\bar\beta<1/3$. We construct infinitely many distributional solutions in $C^{\beta}_{x,t}$ to the three-dimensional Euler equations that do not conserve the energy, for a given initial data in $C^{\bar\beta}$. We also show that there is some limited control on the increase in the energy for $t>1$.

报告人简介:叶伟奎,博士后,现就职于北京应用物理与计算数学研究所。博士毕业于中山大学数学学院,主要研究浅水波方程(如Camassa-Holm方程, Hunter-Saxton方程)和流体方程(如Navier-Stokes方程,MHD方程和Oldroyd-b方程)的适定性与不适定性理论,发表SCI学术论文数篇,其中有Acta Mathematica Sinica, English Series; Journal of Mathematical Fluid Mechanics; Journal of Differential Equations; Nonlinear Analysis: Real World Applications等。


上一条:分析系列报告

下一条:概率统计系列报告

【关闭】 打印    收藏