学 术 报 告
报告题目:Stability breaking, concentration breaking and asymptotic analysis in two thermal insulation problems
报告人:李沁峰 副教授 (湖南大学)
报告时间:2020年11月23日上午9点30分- 10点30分
报告地点:数统院307室
红世一足666814
2020.11.17
报告摘要:In 2017, Bucur-Buttazzo-Nitsch introduced two thermal insulation problem: the energy problem and the eigenvalue problem. In this talk, I will present the stability and concentration breaking result in the energy problem. I will also show that in the eigenvalue problem, as the total mass of the insulating material goes to the symmetry breaking number of a ball, the product of the total mass and the eigenvalue on the ball converge to exactly the half of its range for $m \in (0,\infty)$. Stability of ball shape is also studied in this problem. This is a joint work with Yong Huang and Qiuqi Li from Hunan University.
报告人简介:李沁峰,2018年博士毕业于普渡大学,之后在德州大学圣安东尼奥分校做博士后研究,2020年8月至今在湖南大学工作。主要研究方向是几何测度论、区域变分问题以及非线性偏微分方程,文章发表在IMRN, CVPDE, IUMJ, Adv. CV等杂志上。